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0 Introduction

In this thesis we will discuss some recent results from the theory of random trees. This
is a relatively young research field with many applications for example in Computer
Science or in the theory of partial differential equations.
We will begin by considering discrete random trees, which may be viewed as a model of
population in which each individual has a random number of children. Further we will
learn about methods of coding those trees, which will allow us to obtain some conver-
gence results.
The next step will be to define real random trees and to find the way of coding them
with suitable functions. As a special case we will get the continuum random tree (CRT)
- a real random tree coded by the normalized Brownian excursion.
Finally, we will show the convergence of (rescaled) discrete random trees to the CRT.

This work is fully based on the paper ”Random Trees and Applications” by Jean-François
Le Galle with few references to other sources.

I would like to thank Prof. Dr. Pierre Nolin for his supervision and Pierre-François
Rodriguez for his valuable comments and remarks.
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1 Discrete Trees

1.1 First definitions

Definition 1.

U =
∞⋃
n=0

Nn

is a set of labels, where N = {1, 2, . . . } ,N0 = {∅}.

Notice:

• An element of U , u = (u1, . . . , un) is a sequence of elements of N.

• For u = (u1, . . . , un) ∈ U we set |u| def
= n, the generation of u.

• Let u = (u1, . . . , un), v = (v1, . . . , vm) be two elements of U , then uv = (u1, . . . , un, v1, . . . , vm)
is called the concatenation of u and v (in particular ∅u = u∅ = u).

• Let u = (u1, . . . , un) ∈ U \ {∅}. Then we define a map Π: U \ {∅} → U (father of
u), as Π((u1, . . . , un)) = (u1, . . . , un−1).

Definition 2. A (finite) rooted ordered tree t is a finite subset U , such that

1. ∅ ∈ t.

2. u ∈ t \ {∅} ⇒ Π(u) ∈ t.

3. for all u ∈ t there exists an integer ku(t) ≥ 0, such that for all j ∈ N

uj ∈ t iff 1 ≤ j ≤ ku(t)

(we interpret ku(t) as a number of children of u).

Remark 1.1. • We denote by A the set of all rooted ordered trees.

• We consider t as the family tree, where each vertex represents an individual.

• The cardinality #(t) is the total progeny.
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1.2 Coding of discrete trees
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Figure 1

Remark 1.2. We will denote by u0 = ∅, u1, . . . , u#(t)−1 elements of t in lexicographical
order.

Definition 3. The height function ht(n) of a tree t is a sequence of generations of
elements in t listed in lexicographical order (ht(n) : 0 ≤ t < #(t)), such that ht(n) = |un|
for 0 ≤ n < #(t).

Definition 4. Suppose the tree is embedded in the half plane, such that edges have length
one. Imagine a particle moving at unit speed on the tree in a continuous way, starting
at the root and visiting all vertices in lexicographical order. The value of the contour
function Cs at time s ∈ [0, ζ(t)] (where ζ(t) = 2(#(t)− 1)) is the distance (on the tree)
between the position of a particle at time s and the root of a tree.

Let S denote the set of all finite sequences of non-negative integers m1, ...,mp for p ≥ 1,
such that

• m1 + . . .+mi ≥ i for all i ∈ {1, . . . , p− 1};

• m1 + . . .+mp = p− 1.

Proposition 1.3. The mapping

Φ: t→ (ku0(t), . . . , ku#(t)−1
(t))

defines a bijection from A to S.

Proof. • Φ is well-defined
We need to check that for a given t ∈ A we have (ku0(t), . . . , ku#(t)−1

) ∈ S. The
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sequence is clearly finite (since t is a finite tree) and all values are non-negative.
Moreover

ku0(t) + . . .+ ku#(t)−1
= #(t)− 1,

because ku0 + . . . + ku#(t)−1
is the number of children in t, hence it counts all

individuals except for the root. Furthermore, for all i ∈ {0, . . .#(t)− 2}

ku0 + · · ·+ kui > i.

This is because u1, . . . , ui are counted among children and the father of ui+1 is
among u0, . . . , ui as well, hence

ku0(t) + . . .+ kui(t) ≥ i+ 1.

• Φ is injective
Let t 6= t

′
, then without loss of generality there exists the first element u in

lexicographical order of t, such that u ∈ t \ t′ . But then kΠ(u)(t) > kΠ(u)(t
′
) ⇒

(ku0(t), . . . , ku#(t)−1
(t)) 6= (ku0(t

′
), . . . , ku

#(t
′
)−1

(t
′
)) ⇒ Φ(t) 6= Φ(t

′
).

• Φ is surjective
Let (m1, . . . ,mp) ∈ S for p ≥ 1. We want to show that there exists t ∈ A, such
that Φ(t) = (m1, . . . ,mp). Note that while constructing a tree we have to make
sure that two conditions are fulfilled, namely

– in each moment, except for the end, (# of children) ≥ (# of fathers);

– at the end (# of children) = (# of fathers) - 1.

But those are exactly the conditions, which (m1, . . . ,mp) satisfies. Hence, setting
ku0 := m1, . . . , kup−1 := mp we get a tree t ∈ A.

Definition 5. Let (m1, . . . ,mp) ∈ S. Then we define a finite sequence of integers

xn
def
=

n∑
i=1

(mi − 1) for 0 ≤ n ≤ p

called Lukasiewicz path.

Remark 1.4. The Lukasiewicz path has the following properties:

1. x0 = 0, xp = −1.

2. xn ≥ 0 for all 0 ≤ n ≤ p− 1.

3. xi − xi−1 ≥ −1 for all 1 ≤ i ≤ p.

Proof. 1. Follows, since m1 + . . .+mp = p− 1.
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2. Follows, since m1 + · · ·+mi ≥ i for all i ∈ {1, . . . , p− 1} and x0 = 0.

3. Follows, since xi−xi−1 =
∑i

j=1(mj − 1)−
∑i−1

k=1(mk− 1) = mi− 1 ≥ −1 (because
mi are non-negative).

Claim 1.5. There exists a bijection between trees (in A) and the Lukasiewicz paths.

Proof. It is easy to see that there is a bijection between the set of Lukasiewicz paths
L and elements S. By construction of the Lukasiewicz path we have #(S) ≤ #(L),
since for a given element in S we construct the Lukasiewicz path. Furthermore, given
(x0, . . . , xp) ∈ L we can uniquely reconstruct (m1, . . . ,mp) knowing that xi − xi−1 =
mi − 1, hence #(L) ≤ #(S), so there is a bijection between both sets. Hence L is
bijective to A by Proposition 1.3.

Note that we can interpret the value xm as the number of elements ”put at the stack”,
while travelling along the tree.

Proposition 1.6. The height function ht is related to the Lukasiewicz path of t by the
formula

ht(n) = #

{
j ∈ {0, 1, . . . , n− 1} : xj = inf

j≤l≤n
xl

}
for all n ∈ {0, 1, . . . ,#(t)− 1}.

Proof. We can see that ht(n) = # {j ∈ {0, 1, . . . , n− 1} : uj ≺ un}. Hence it is enough
to show that

uj ≺ un ⇔ xj = inf
j≤l≤n

xl.

We will need the following definition and lemma:

Definition 6. If t is a tree and v ∈ t, then we denote by Tvt the tree shifted at v

Tvt = {u ∈ U : vu ∈ t} .

Lemma 1.7. Let Tuj be a shifted tree, then

x
Tuj
i = xtj+i − xtj

for all i ∈
{

0, ...,#(Tuj )− 1
}

, where x
Tuj
i and xti are the Lukasiewicz paths of Tuj and

t, respectively.

Proof. We observe the following:

kui(Tuj t) = kuj+i(t)
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(note that Tuj inherits the lexicographical order from t). Hence we have

x
Tuj
i =

i−1∑
l=0

(kui(Tuj )− 1) =
i−1∑
l=0

(kuj+i(t)− 1) = xtj+i − xtj .

Back to the proof of Proposition 1.6.
”⇒” Let uj ≺ un. Consider Tuj . Since Tuj is a tree we know that

x
Tuj t

0 ≤ x
Tuj t

i for all i ∈
{

0, . . . ,#(Tuj t)− 1
}

.

Hence

x
Tuj t

0 = inf
i∈{0,...,#(Tuj t)−1}

x
Tuj t

i

and by Lemma 1.7 we obtain

xtj = inf
i∈{0,...,#(Tuj t)−1}

xtj+i = inf
i∈{j,...,#(Tuj t)−1}

xti.

In particular

xtj = inf
j≤i≤n

xti

(because n ≤ j + #(Tuj t)− 1, since uj ≺ un).
”⇐” Let xj = infj≤l≤n xl and assume that uj ⊀ un. Consider again the tree Tuj t. Since
uj ⊀ un we have n > j + #(Tuj t) − 1 (by a property of the lexicographical order).
Moreover, we know that for uj+#(Tuj t)

(the first element in lexicographical order of t not

being descendant of uj) holds

xtj − xtj+#(Tuj t)
= x

Tuj t

0 − x
Tuj t

#(Tuj t)
= −1⇒ xtj > xtj+#(Tuj t)

⇒ xj 6= infj≤l≤n xl. Contradiction.

1.3 Galton-Watson trees

Let µ be a critical or subcritical offspring distribution, i.e. a probability measure on Z+,
such that

∑∞
k=0 kµ(k) ≤ 1 (we exclude µ(1) = 1 to avoid a trivial case).

We will make the following construction of a µ-Galton-Watson tree. Consider (Ku, u ∈ U)
a collection of independent random variables with distribution µ. Furthermore, let θ be
a random subset of U , defined as

θ =
{
u =

(
u1, . . . , un

)
∈ U : uj ≤ K(u1,...,uj−1) ∀1 ≤ j ≤ n

}
(Note that we can view θ as a random variable taking values in the space of discrete
random trees (A,P(A)).)
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Proposition 1.8. θ is almost surely a tree. Moreover, if Zn
def
= # {u ∈ θ : |u| = n}, then

(Zn, n ≥ 0) is a Galton-Watson process with offspring distribution µ and initial value
Z0 = 1.

Proof. • θ is almost surely a tree
By construction of θ we see that θ(ω) satisfies the conditions in the definition of a
tree almost surely. Furthermore, the finiteness of θ(ω) follows from our approach,
since we consider θ as a µ-Galton-Watson tree with critical and subcritical offspring
distribution. (see [2] for a general discussion).

• (Zn, n ≥ 0) is a Galton-Watson process
This fact follows from the construction above. We have Z0 = 1 (because ∅ is
the only element in the 0th generation). Furthermore, Zn =

∑
u∈θ,|u|=n−1Ku (Ku

represents the number of children of an individual u and are µ-distributed). Hence,
we get a Galton-Watson process with offspring distribution µ.

Definition 7. If t is a tree and 1 ≤ j ≤ k∅(t), then we denote by Tjt the tree shifted at j

Tjt = {u ∈ U : ju ∈ t} .

Remark 1.9. • Tjt is a tree.

• We will consider the probability distribution Πµ of θ on A, which has the following
properties

1. Πµ(k∅ = j) = µ(j), ∀j ∈ Z+

2. for every j ≥ 1 with µ(j) ≥ 0, the shifted trees T1t, . . . , Tjt are independent
under the conditional probability Πµ(dt|k∅ = j) and their conditional distri-
bution is Πµ (this is called branching property of the Galton-Watson tree).

Proposition 1.10. For every t ∈ A, we have

Πµ(t) =
∏
u∈t

µ(ku(t)).

Proof. First we can notice that

{θ = t} =
⋂
u∈t
{Ku = ku(t)}

(since by Proposition 1.3 (ku0(t), . . . , ku#(t)−1
(t)) uniquely determines the tree t).

Hence

Πµ(t) = P(θ = t) = P(
⋂
u∈t
{Ku = ku(t))}

∗
=
∏
u∈t
P(Ku = ku(t))

∗∗
=
∏
u∈t

µ(ku(t))

(where * and ** holds, since Ku are independent and µ-ditributed).
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Proposition 1.11. Let θ be a µ-Galton-Watson tree. Then:

Φ(θ)
def
= (M1,M2, . . . ,MT )

where the random variables M1,M2, . . . are independent and µ-distributed and T
def
=

inf {n ≥ 1 : M1 + . . .+Mn < n}.

Proof. Let U0, U1, . . . , U#(θ)−1 be elements of θ in lexicographical order. We can write

Φ(θ) = (KU0 ,KU1 , . . . ,KU#(θ)−1
).

Note that KU0 + . . . + KUn ≥ n+ 1 for all n ∈ {0, 1, . . . ,#(θ)− 2} and KU0 + . . . +
KU#(θ)−1

= #(θ)− 1. Furthermore, we define Up for p ≥ #(θ) by

Up
def
= U#(θ)−1 1 . . . 1︸ ︷︷ ︸

p−#(θ)+1 ones

.

Now it suffices to prove that KU0 , . . . ,KUp are independent and µ-distributed for all
p ≥ 0. Observe that we cannot just use the fact that (Ku, u ∈ U) are independent
and µ-distributed, since in our case the indices are also random. We will proceed by
induction.
For p = 0 and p = 1 the result is clear, since U0 = ∅ and U1 = 1 are deterministic.
Take p ≥ 2 fixed and assume that we have already proven the case p−1. We can observe
that for all fixed u ∈ U the random set

θ ∩ {v ∈ U : v ≤ u}

is measurable with respect to σ-algebra σ(Kv, v < u).
Note that θ ∩ {v ∈ U : v ≤ u} is a random variable taking values in Au, where

Au
def
= A ∩ {v ∈ U : v ≤ u}. The measurability follows, since for all t ∈ Au we have

(θ ∩ {v ∈ U : v ≤ u})−1(t) =
⋂
v<u

{Kv = av} ,

where av =

{
uj , if v = (u1, . . . , uj−1)

kv(t), otherwise
. So, clearly (θ ∩ {v ∈ U : v ≤ u}) is

σ(Kv, v < u)-measurable. From that we obtain that the event

{Up = u} ∩ {#(θ) > p}

is measurable with respect to σ(Kv, v < u). To show this note first that

{Up = u} ∩ {#(θ) > p}

=
⋃

u0<u1<...<up−1<u

{U0 = u0, . . . , Up−1 = up−1, Up = u,#(θ) > p} .
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Furthermore, we see that for t = (u0, u1, . . . , up−1, u) we have

(θ ∩ {v ∈ U : v ≤ u})−1(t)

= {U0 = u0, . . . , Up−1 = up−1, Up = u,#(θ) > p}

and this set is in σ(Kv, v < u) by the consideration above. Hence, {Up = u}∩{#(θ) > p}
is in σ(Kv, v < u) as a countable union of sets above.
Similarly, we see that

{Up = u} ∩ {#(θ) ≤ p}

is also measurable with respect to σ(Kv, v < u).
Note the following equality:

{Up = u} ∩ {#(θ) ≤ p} =

p⋃
k=1

({Up = u} ∩ {#(θ) = k)} .

Furthermore

{Up = u} ∩ {#(θ) = k}

=
⋂

u0<...<uk−1<u

U0 = u0, . . . , Uk−1 = uk−1, u = uk−1 1 . . . 1︸ ︷︷ ︸
p−k+1


is σ(Kv, v < u)-measurable. Hence

{Up = u} ∩ {#(θ) ≤ p}

is σ(Kv, v < u)-measurable. From that it follows that {Up = u} is measurable with
respect to σ(Kv, v < u).
Now we will need the following lemma:

Lemma 1.12. The random variables Z1, . . . , Zk are independent iff E[
∏k
i=1 fi(Zi)] =∏k

i=1 E[fi(Zi)] for all non-negative functions fi : R→ R.

Proof. ”⇒” This result is well-known in Probability Theory (confirm with [8], Corollary
(4.7)) and we will not prove it, since only the other implication will be of interest for us.
”⇐” We can set fi := 1Bi with Bi ∈ B(R), i = 1, 2, . . . , k, hence we obtain independence
of Z1, . . . , Zk.

Let g0, g1, . . . , gp be non-negative functions on {0, 1, . . .} then

E[g0(KU0)g1(KU1) . . . gp(KUp)]

=
∑

u0<u1<...<up

E[1{U0=u0,...,Up=up}g0(Ku0) . . . gp(Kup)]

=
∑

u0<u1<...<up

E[1{U0=u0,...,Up=up}g0(Ku0) . . . gp−1(Kup−1)]E[gp(Kup)](∗)
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The last equality holds, since Kup is independent of (Kv, v < up) together with the fact
that {Up = up} is σ(Kv, v < u) measurable. Furthermore, noticing that E[gp(Kup)] =
µ(gp) does not depend on up we can write

(∗) = µ(gp)
∑

u0<...<up

E[1{U0=u0,...,Up=up}g0(Ku0) . . . gp−1(Kup−1)].

In particular, setting gp ≡ 1 we obtain

E[g0(KU0)g1(KU1) . . . gp−1(KUp−1)]

=
∑

u0<u1<...<up

E[1{U0=u0,...,Up=up}g0(Ku0) . . . gp−1(Kup−1)].

Finally, we get

E[g0(KU0)g1(KU1) . . . gp(KUp)]

= E[g0(KU0)g1(KU1) . . . gp−1(KUp−1)]E[gp(KUp)].

Now the statement follows by the induction assumption.

As a direct Corollary we get

Corollary 1.13. Let (Sn, n ≥ 0) be a random walk on Z with initial value S0 and
jump distribution ν(k) = µ(k + 1) for all k ≥ −1. Set T = inf {n ≥ 1 : Sn = −1}.
Then the Lukasiewicz path of a µ-Galton-Watson process has the same distribution as
(S0, S1, . . . , ST ). In particular #(θ) and T has the same distribution.

Proof. By Proposition 1.11 we have

Φ(θ) = (KU0 , . . . ,KUT )

where T = inf {n ≥ 0 : KU0 + . . .+KUn = n}. Moreover, set

S0 = 0,

Sk =
k−1∑
i=0

(KUi − 1).

Hence clearly jumps (KUi − 1) of Sk are ν-distributed and

T = inf {n ≥ 0 : KU0 + . . .+KUn = n}
= inf {n ≥ 0 : (KU0 − 1) + . . .+ (KUn − 1) = −1}
= inf {n ≥ 1 : Sn = −1} .
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1.4 Convergence to Brownian Motion

We will show that suitably rescaled height functions (respectively contour functions)
converge in distribution to the normalized Brownian excursion.
From now on, we will consider the critical offspring distribution µ (i.e.

∑∞
k=0 kµ(k) = 1)

with finite variance σ2 > 0. Moreover, we assume that µ has finite exponential moments,
i.e. exists λ > 0, such that

∑∞
k=0 e

λkµ(k) <∞.

Definition 8. Let θ1, θ2, . . . be a sequence of µ-Galton-Watson trees. With each tree we
associate a height function (hθi(n), 0 ≤ n ≤ #(θi) − 1). We define the height process
(Hn, n ≥ 0) as follows

Hn = hθi(n− (#(θ1) + . . .+ #(θi−1)))

if #(θ1) + . . .+ #(θi−1) ≤ n < #(θ1) + . . .+ #(θi).

Note:

• (Hn, n ≥ 0) determines the sequence of trees.

• kth excursion of Hn from 0 is the height function of the kth tree.

Proposition 1.14. For every n ≥ 0 it holds:

Hn = #

{
k ∈ {0, 1, . . . , n− 1} : Sk = inf

k≤j≤n
Sj

}
where (Sn, n ≥ 0) is a random walk defined in Corollary 1.13.

Proof. The proposition follows directly from the fact that the random walk (Sn, n ≥ 0)
has the same distribution as the Lukasiewicz path of sequence of random trees θ1, θ2, . . .
(by Corollary 1.13) together with Proposition 1.6.

Now we come to our main convergence result.

Theorem 1.15. Let θ1, θ2, . . . be a sequence of independent µ-Galton-Watson trees and
(Hn, n ≥ 0) the associated height process. Then

(
1
√
p
H[pt], t ≥ 0)

(d)−−−→
p→∞

(
2

σ
γt, t ≥ 0)

where γ is a reflected Brownian Motion. Convergence holds in the sense of weak conver-
gence on the Skorokhod space D(R+,R+).

Proof. Let S = (Sn, n ≥ 0) be as in Corollary 1.13. Note that S is recurrent. This holds
because its jumps have mean zero, since

∞∑
k=0

kµ(k) =
∞∑
k=0

kν(k − 1) =
∞∑

k=−1

(k + 1)ν(k) = 1

⇒
∞∑

k=−1

kν(k) = 0,
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therefore S also has mean zero. Hence either it takes only values 0 from some point on
or it takes infinitely many positive and negative values. But, since the only negative
jump of S is -1 we have that S must cross 0 each time. Furthermore, we introduce

Mn = sup
0≤k≤n

Sk, In = inf
0≤k≤n

Sk.

By Donsker’s invariance theorem we get

(
1
√
p
S[pt], t ≥ 0)

(d)−−−→
p→∞

(σBt, t ≥ 0)

where B is a Brownian Motion started at the origin.
Furthermore, introduce for all n ≥ 0 time-reversed random walk Ŝn

Ŝn
def
= Sn − S(n−k)+ .

Note that (Ŝn, 0 ≤ k ≤ n) has the same distribution as (Sk, 0 ≤ k ≤ n). Hence from
Proposition 1.14 we have

Hn = #

{
k ∈ {0, 1, . . . , n− 1} : Sk = inf

k≤j≤n
Sj

}
= Φn(Ŝn)

where Φ is defined as Φn(ω) = #
{
k ∈ {1, . . . , n} : ω(k) = sup0≤j≤k ω(j)

}
for any dis-

crete trajectory ω = (ω(0), ω(1), . . .).
Furthermore, set

Kn = Φn(S) = # {k ∈ {1, . . . , n} : Sk = Mk} .

Lemma 1.16. Define a sequence of stopping times Tj, j = 0, 1, . . . by setting T0 and
Tj = inf {n > Tj−1 : Sn = Mn}. Then the random variables STj −STj−1, j = 1, 2, . . . are
iid with distribution

P[ST1 = k] = ν([k,∞)), k ≥ 0.

Proof. • (STj − STj−1) are iid by the Strong Markov Property.

• We need to compute the distribution of ST1 .
For R0 = inf {n ≥ 1 : Sn = 0} we have the following claim:

Claim 1.17.

E[

R0−1∑
n=0

1{Sn=i}] = 1 for all i ∈ Z.

Proof. (A reference for this proof is [3], in particular Proposition 31.)
We will deduce the result from more general considerations for Markov processes.
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Let (Xn)n≥0 be the irreducible Markov chain on the countable state space E, with
transition probabilities P = (pxy)x,y∈E . Let τ+

x be defined as

τ+
x

def
= inf {n ≥ 1 : Xn = x} (return time to x).

Furthermore, we can introduce for x ∈ E

µx(y)
def
= Ex[

τ+x∑
n=1

1{Xn=y}] (number of visits in y).

Note that we obtain setting from the claim if we set

– Markov process Xn to be random walk Sn;

– state space E to be Z;

– starting point x = 0, visited point y = i;

– stopping time τ+
x = R0

(note that: Ex[
∑τ+x

n=1 1{Xn=y}] = Ex[
∑τ+x −1

n=0 1{Xn=y}]).

Lemma 1.18. Let x ∈ E be a recurent state of P = (pxy)x,y∈E, then µx(·) is an
invariant measure of P.

Proof. Recall:
A probability measure Π on E, such that Π(x) ≥ 0 for all x ∈ E is called invariant
measure of the Markov chain with transition probabilities P = (pxy)x,y∈E , if

∀y ∈ E Π(y) =
∑
x∈E

Π(x)pxy.

We have to check the condition above

µx(y) = Ex[

τ+x∑
n=1

1{Xn=y}] = Ex[

∞∑
n=1

1{Xn=y,n≤τ+x }]

Fubini
=

∞∑
n=1

Px[Xn = y, n ≤ τ+
x ] =

∞∑
n=1

∑
z∈E

Px[Xn−1 = z,Xn = y, n ≤ τ+
x ]

Markov
=

∞∑
n=1

∑
z∈E

pzyPx[Xn−1 = z, n ≤ τ+
x ]

Fubini
=

∑
z∈E

pzy

∞∑
n=1

Px[Xn−1 = z, n ≤ τ+
x ]

=
∑
z∈E

pzy

∞∑
n=1

Ex[1{Xn−1=z,n≤τ+x }]
Fubini

=
∑
z∈E

pzyEx[

τ+x∑
n=1

1{Xn−1=z}]

=
∑
z∈E

pzyEx[

τ+x −1∑
n=0

1{Xn=z} =
∑
z∈E

pzyµx(z) ∀y ∈ E.

Hence µx is invariant.
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Furthermore, we can consider an invariant measure on E defined as

ν(x) = 1, ∀x ∈ E.

By uniqueness (up to multiplication with a constant) of an invariant measure for
recurrent, irreducible Markov chain we have

µx = c · µ (∀y ∈ E being recurrent state).

Coming back to our original setting we can find a constant value c

µ0(i) = E[

R0−1∑
n=0

1{Sn=i}] = cν(i), ∀i ∈ Z (because S is recurrent).

In particular for i = 0

µ0(0) = 1 = cν(0) = c⇒ c = 1.

Hence

E[

R0−1∑
n=0

1{Sn=i}] = 1.

Now we come back to the Proof of Lemma 1.16.
Note, that T1 ≤ R0 and that S takes only positive values on (T1, R0). For i ≤ 0 it
follows

E[

T1−1∑
n=0

1{Sn=i}] = 1.

This is because

1 = E[

R0−1∑
n=0

1{Sn=i}] = E[

T1−1∑
n=0

1{Sn=i}] + E[

R0−1∑
n=T1

1{Sn=i}]︸ ︷︷ ︸
=0

).

Therefore for all g : Z→ Z+:

E[

T1−1∑
n=0

g(Sn)] =
0∑

i=−∞
g(i).

This is because

E[

T1−1∑
n=0

g(Sn)] = E[

T1−1∑
n=0

∞∑
i=−∞

g(i)1{Sn=i}] = E[

T1−1∑
n=0

0∑
i=−∞

g(i)1{Sn=i}]

Fubini
=

0∑
i=−∞

g(i)E[

T1−1∑
n=0

1{Sn=i}] =
0∑

i=−∞
g(i).
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Then for all f : Z→ Z+:

E[f(ST1)]
∗
= E[

∞∑
k=0

1{k<T1}f(Sk+1)1{Sk+1≥0}]

Fubini
=

∞∑
k=0

E[1{k<T1}f(Sk+1)1{Sk+1≥0}]

=

∞∑
k=0

E[1{k<T1}

∞∑
j=0

ν(j)f(Sk + j)1{Sk+j}]

Fubini
= E[

∞∑
k=0

1{k<T1}

∞∑
j=0

ν(j)f(Sk + j)1{Sk+j}]

= E[

T1−1∑
k=0

(
∞∑
j=0

ν(j)f(Sk + j)1{Sk+j})]

=

0∑
i=−∞

∞∑
j=0

ν(j)f(i+ j)1{i+j≥}

∗∗
=

∞∑
m=0

f(m)

∞∑
j=m

ν(j)

(where (*) holds, since we want to pick first k, such that k+1 is nonnegative and
take f(Sk+1);
(**) holds because we have

0∑
i=−∞

∞∑
j=0

ν(j)f(i+ j)1{i+j}
Fubini

=

∞∑
j=0

∞∑
i=0

ν(j)f(j − i)1{j−i≥0}

=
∞∑
j=0

j∑
i=0

ν(j)f(j − i) =
∞∑
j=0

j∑
m=0

ν(j)f(m) =
∞∑
m=0

f(m)
∞∑
j=m

ν(j)).

Now take f(x) = 1{x=k} in order to get the statement of the lemma.

Furthermore, we can note that ST1 has finite first moment

E[ST1 ] =
∞∑
k=0

kν([k,∞)) =
∞∑
k=0

k
∞∑
j=k

ν(j) =
∞∑
j=0

j∑
k=0

kν(j)

=
∞∑
j=0

j(j + 1)

2
ν(j)

∗
=
σ2

2
.
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In order to see that (*) holds, consider µ a ditribution with variance σ2 > 0 and mean
1. Let X be a µ-ditributed random variable. Then we have

σ2 + 1 = E[X2] =
∞∑
k=0

k2µ(k) =
∞∑
k=0

k2ν(k − 1) =
∞∑

k=−1

(k + 1)2ν(k)

=

∞∑
k=0

(k + 1)2ν(k) =

∞∑
k=0

k(k + 1)ν(k) +

∞∑
k=0

(k + 1)ν(k)︸ ︷︷ ︸
=
∑∞
k=0(k+1)µ(k+1))=1

⇒
∞∑
k=0

k(k + 1)ν(k) = σ2.

We will now need the following lemma:

Lemma 1.19. Let ε ∈ (0, 1
4). We can find ε′ > 0 and an integer N ≥ 1 such that, for

every n ≥ N and l ∈ {0, 1, . . . , n}

P[|Ml −
σ2

2
Kl| > n

1
4

+ε] < exp(−nε′).

We continue with the proof of Theorem 1.15. We will prove the lemma afterwards.
Take ε = 1

8 . (Mn,Kn) has the same distribution as (Sn − In, Hn). To see that it is

enough to replace S with Ŝn and note that Mn − Sn = −În, Sn = Ŝnn , since S and Ŝn

have the same distribution. Hence, we can apply Lemma 1.19 in order to get (for n
sufficiently large and l ∈ {1, . . . , n}):

P[|Sl − Il −
σ2

2
Hl| > n

3
8 ] < exp(−nε′)

⇒ P[ sup
0≤l≤n

|Sl − Il −
σ2

2
Hl| > n

3
8 ] < n exp(−nε′).

Take an integer A ≥ 1:

P[ sup
0≤t≤A

|S[pt] − I[pt] −
σ2

2
H[pt]| > (Ap)

3
8 ] < (Ap) exp(−(Ap)ε

′
) (1)

⇒ P[ sup
0≤t≤A

|
S[pt] − I[pt]√

p
− σ2

2

H[pt]√
p
| > A

3
8

p
1
8︸ ︷︷ ︸

Ap:=

] < (Ap) exp(−(Ap)ε
′
). (2)

Furthermore, from∑
p≥1

P[Ap] ≤
∑
p≥1

(Ap) exp(−(Ap)ε
′
) <∞
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(last inequality holds, since n exp(−nε′) ≤ 1
n2 for all ε′ > 0 and n sufficiently large).

Hence by the Borel-Cantelli Lemma we have

P[lim sup
p→∞

Ap] = 0

(i.e. the probability that infinitely many Ap’s occur is 0) and together with the fact that

A
3
8 p−

1
8 −−−→
p→∞

0 we obtain

sup
0≤t≤A

|
S[pt] − I[pt]√

p
− σ2

2

H[pt]√
p
| −−−→
p→∞

0 almost surely.

Hence by Donsker’s invariance theorem we obtain

(
1
√
p

(S[pt] − I[pt]), t ≥ 0)
(d)−−−→
p→∞

(σ(Bt − inf
0≤s≤t

Bs), t ≥ 0)

and by a theorem due to Paul Lévy we know that (Bt− inf0≤s≤tBs, t ≥ 0) is a reflected
Brownian Motion. (Confirm with Thm. 3.6.17. in [4].)

Let us now prove Lemma 1.19. We will need one more lemma:

Lemma 1.20. Let Y1, Y2, . . . be a sequence of iid real random variables. We assume
that there exists a number λ > 0, such that E[exp(λ|Y1|)] < ∞ and that E[Y1] = 0.
Then for all α > 0, we can choose N sufficiently large, such that for all n ≥ N and
l ∈ {1, 2, . . . , n}

P[|Y1 + . . .+ Yl| > n
1
2

+α] ≤ exp(−n
α
2 ).

Proof. First observe the following fact:

P[|Y1 + . . .+ Yl| > n
1
2

+α] = P[Y1 + . . .+ Yl > n
1
2

+α]︸ ︷︷ ︸
1

+P[−(Y1 + . . .+ Yl) > n
1
2

+α]︸ ︷︷ ︸
2

1. Since E[exp(λ|Y1|)] <∞ (in particular all moments of Y1 are finite) we can Taylor-
expand the function E[exp(λY1)]:

E[exp(λY1)] = E[1 + λY1 +
1

2
λ2Y 2

1 + o(λ2)] = 1 + cλ2 + o(λ2) (λ→ 0)

(where c := 1
2var(Y1)). Hence there exists a constact C, such that for sufficiently

small λ > 0:

E[exp(λY1)] ≤ eCλ2 .

Furthermore, we have

P[Y1 + . . .+ Yl > n
1
2

+α]
∗
≤ e−n

1
2+αλE[eλ(Y1+...+Yl)] ≤ e−n

1
2+αλeCλ

2n
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((*) holds because 1{
Y1+...+Yl−n

1
2+α≥0

} ≤ eλ(Y1+...+Yl−n
1
2+α) almost surely).

Taking λ := n−
1
2 (for n large enough) we have

P[Y1 + · · ·+ Yl > n
1
2

+α] ≤ eCe−nα .

2. We proceed analogously as in 1. in order to obtain a similar bound

E[exp(−λY1)] ≤ eCλ2 .

And further

P[−(Y1 + . . .+ Yl) > n
1
2

+α] ≤ e−n
1
2+αλE[e−λ(Y1+...+Yl)] ≤ e−n

1
2+αλeCλ

2n

λ:=n−
1
2

=====⇒ P[−(Y1 + . . .+ Yl) > n
1
2

+α] ≤ eCe−nα .

Hence, from 1. and 2. we finally obtain

P[|Y1 + · · ·+ Yl| > n
1
2

+α] ≤ 2eCe−n
α ≤ e−n

α
2

where the last inequality holds for n sufficiently large.

We can finally prove Lemma 1.19.

Proof. Take α ∈ (0, ε2) and introduce mn
def
= [n

1
2

+α]. Then for all l ∈ {0, 1, . . . , n}

P[|Ml −
σ2

2
Kl| > n

1
4

+ε] ≤ P[Kl > mn]︸ ︷︷ ︸
1

+P[|Ml −
σ2

2
Kl| > n

1
4

+ε, Kl ≤ mn]︸ ︷︷ ︸
2

.

It is enough to find bounds for 1. and 2.:

2: P[|Ml −
σ2

2
Kl| > n

1
4

+ε, Kl ≤ mn]

≤ P[ sup
0≤k≤mn

|
k∑
j=1

((STj − STj−1)− σ2

2
)| > n

1
4

+ε]

∗
≤ P[sup 0 ≤ k ≤ mn|

k∑
j=1

((STj − STj−1)− σ2

2
)| > m

1
2

+ε
n ]

∗∗
≤ mn exp(−m

ε
2
n )

(*) holds, because

m
1
2

+ε
n = [n

1
2

+ε]
1
2

+ε ≤ [n
1
2

+ ε
2 ]

1
2

+ε ≤ n
1
4

+ 3
4
ε+ ε2

2 ≤ n
1
4

+ε
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for ε small enough;
(**) holds by Lemma 1.20. Note, that we can use the lemma, since

E[ST1 −
σ2

2
] = 0

and further

E[exp(λ|ST1 −
σ2

2
|)] ≤ max(E[exp(λST1)], exp(λ

σ2

2︸ ︷︷ ︸
<∞

))

(because ST1 is non-negative). Hence, we get

E[exp(λST1)]
L. 1.16

=

∞∑
k=0

eλkν([k,∞))

=
∞∑
j=0

eλk
j∑

k=0

eλkν(j) =
∞∑
j=0

ν(j)
eλ(j+1) − 1

eλ − 1

=
eλ

eλ − 1

∞∑
j=0

ν(j)eλj︸ ︷︷ ︸
<∞ (finite exp. moments)

− 1

eλ − 1

∞∑
j=0

ν(j)︸ ︷︷ ︸
<1

<∞.

Thus, the assumptions of Lemma 1.20 are satisfied.

1 : P[Kl > mn] ≤ P[Kn > mn] ≤ P[STmn ≤Mn].

Hence

P[Kl > mn] ≤ P[STmn ≤ n
1
2

+α
2 ]︸ ︷︷ ︸

I

+P[Mn > n
1
2

+α
2 ]︸ ︷︷ ︸

II

.

For n large we can apply Lemma 1.20 (in order to get bound for II):

P[Mn > n
1
2

+α
2 ] = P[ sup

0≤k≤n
Sk > n

1
2

+α
2 ] ≤ n exp(−n

α
4 )

(the last equality holds by Lemma 1.20, since Sk = Y1 + . . .+ Yk has mean 0 and finite
exponential moments).
So now we only need to find a bound for I.

P[STmn ≤ n
1
2

+α
2 ] = P[STmn −

σ2

2
mn ≤ n

1
2

+α
2 − σ2

2
mn]

≤ P[STmn −
σ2

2
mn ≤ n

1
2

+α
2 ] ≤ exp(n−

α
4 )
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(the last inequality holds by Lemma 1.20, since (STmn −
σ2

2 mn) is a sum of centered iid
random variables, hence

E[STmn −
σ2

2
mn] = 0

and

E[exp(λ|STmn −
σ2

2
mn|)] ≤ E[exp(λSTmn )] = E[exp(λST1)]mn <∞).

Hence, we get

P[|Ml −
σ2

2
Kl| > n

1
4

+ε] ≤ mn exp(−m
ε
2
n ) + n exp(−n

α
4 ) + exp(−nα4)

∗
≤ (mn + n+ 1) exp(−n

α
4 ) ≤ exp(−nε′) for some ε′ > 0

((*) holds, because exp(−m
ε
2
n ) ≤ exp(−n

α
4 ), since [nα+ 1

2 ]
ε
2 > n

α
4 ).

1.5 Galton-Watson trees with a fixed progeny

In this section we will prove a similar result as in Theorem 1.15, but for the tree having
fixed number of individuals.
Furthermore, we assume that µ has finite exponential moments.
For every p ≥ 1 we denote by θ(p) a µ-Galton-Watson tree conditioned to have #(θ) = p.
For this to hold we need an assumption that P[#(θ) = p] > 0 for all p ≥ 1 (which holds,
if µ(1) ≥ 0).

Furthermore, we denote by (H
(p)
k )0≤k≤p the height process of θ(p), with the convention

H
(p)
p = 0.

Theorem 1.21. We have

(
1
√
p
H

(p)
[pt], 0 ≤ t ≤ 1)

(d)−−−→
p→∞

(
2

σ
et, 0 ≤ t ≤ 1).

In order to prove this theorem we will need a lemma that can viewed as a conditional
Donsker’s invariance theorem (hence, we will not prove it).

Lemma 1.22. The distribution of the process ( 1√
pS[pt], 0 ≤ t ≤ 1) under the conditional

probability P(·|T1 = p) converges as p tends to ∞ to the law of (σet,0 ≤ t ≤ 1).

Let’s prove now Theorem 1.21.

Proof. Let (Hn, n ≥ 0) be the height process associated with the sequence of independent
µ-Galton-Watson trees. We will assume that H is given in terms of the random walk as
in Proposition 1.14. By T1 we will denote the number of vertices of a first tree

T1 = inf {n ≥ 1 : Hn = 0} = inf {n ≥ 0 : Sn = −1} .
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By a combinatorial argument we obtain

P[T1 = p] =
1

p
P[Sp = −1].

In order to get this formula consider a random walk on [0, p] with ν-distributed jumps,
such that S0 = 0 and Sp = −1. It is easy to see that there is only one cyclic permutation
of increments of S, such that p is the first time, when S reaches -1. It is namely the one
that shifts the first time, when S reaches its minimum to p. The set of similar combina-
torial results for random walks is known in the literature as the ”Ballot Theorem”.
On the other hand from the local Central Limit Theorem we have

lim
p→∞

√
p P[Sp = −1] =

1

σ
√

2π
.

As a reference to this result we use [5]. Recall:

Definition 9. (D1, Ch.1, p.42,[5]) A random walk with transition function P (x, y) on
R is called strongly aperiodic if it has the property that for each x in R, the smallest
subgroup of R which contains the set

x+ Σ = [y|y = x+ z, where P (0, z) > 0]

is R itself.

Note, that the condition µ(1) > 0 that we assumed at the beginning of this subsection
guarantees us the strong aperiodicity.
Furthermore, we have the following result:

Proposition 1.23. (P9, Ch.2, p.75,[5]) For strongly aperiodic random walk of dimen-
sion d ≥ 1 with mean µ = 0 and finite second moments,

lim
n→∞

(2πn)
d
2Pn(0, x) = |Q|−

1
2 , x ∈ R,

where |Q| is the determinant of the quadratic form

Q(θ) =
∑

x ∈ R(x · θ)2P (0, x).

It is easy to see that in the one-dimensional case we have |Q| = σ2 and hence, we
directly get the formula used above.

From that we obtain

P[T1 = p] ∼ 1

σ
√

2πp3
as p→∞. (3)

From the proof of Theorem 1.15 (( 1) with A = 1) we recall that we can find ε > 0,
such that for p large enough

P[ sup
0≤t≤1

|σ
2

2

H[pt]√
p
−
S[pt] − I[pt]√

p
| > p−

1
8 ] < exp(−pε).
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Comparing with ( 3) we get

P[ sup
0≤t≤1

|σ
2

2

H[pt]√
p
−
S[pt] − I[pt]√

p
| > p−

1
8 | T1 = p] < exp(−pε′) (for ε′ < ε).

Furthermore, since In = 0 for 0 ≤ n < T1, hence, for p large enough

P[ sup
0≤t≤1

|σ
2

2

H[pt]√
p
−
S[pt]√
p
| > p−

1
8 | T1 = p] < exp(−pε′).

Note, that (H
(k)
p , 0 ≤ k ≤ p) has the same distribution as (Hk, 0 ≤ k ≤ p) under

P[·|T1 = p]. Hence, Theorem 1.21 follows from the last bound together with Lemma 1.22
(by the same argument as in the proof of Theorem 1.15).

1.6 Convergence of contour functions

We will see that the convergence result for height functions from the previous section
can also be shown for contour functions.
Let us consider again a sequence θ1, θ2, . . . of independent µ-Galton-Watson trees. Let
(Ct, t ≥ 0) denote the contour process obtained by concatenating the contour functions
of θ1, θ2, . . . . We will use the following convention:
Ct(θ) is a contour function defined for 0 ≤ t ≤ ξ(θ) := 2#(θ) − 1, by taking Ct = 0, if
ζ(θ) ≤ t ≤ ξ(θ) (where ζ(θ) = 2(#(θ)− 1)). We obtain (Ct, t ≥ 0) by concatenating the
functions (Ct(θ1), 0 ≤ t ≤ ξ(θ1)), (Ct(θ2), 0 ≤ t ≤ ξ(θ2)), . . ..
For n ≥ 0 define a sequence:

Jn = 2n−Hn + In.

Note, that Jn is strictly increasing and that Jn ≥ n for all n. This is because J0 ≥ 0 and
Jn+1−Jn = 2− (Hn+1 −Hn)︸ ︷︷ ︸

≤1

+ (In+1 − In)︸ ︷︷ ︸
∈{−1,0}

≥ 1 (because cases 1 and -1 cannot occur at

the same time).

Claim 1.24. [Jn, Jn+1] is the time interval during which the contour process goes from
the individual n to the individual n+1.

Proof. We will proceed by induction on n. Let Tn,n+1 be time needed to move from the
individual n to n+1. We need to show Tn,n+1 = Jn+1 − Jn.

• For [J0, J1] we have J1 − J0 = 1 and clearly T0,1 = 1.

• Assume that the statement holds for [Jn−1, Jn]. We have to show it for [Jn, Jn+1]
(by the induction assumption it is enough to show Tn,n+1 = Jn+1−Jn). There are
two cases, which we need to consider

1. n and n+1 are in the same tree (so In = In+1). Then

– Hn+1 > Hn (so Hn+1 −Hn = 1), hence, Jn+1 − Jn = 1 and Tn,n+1 = 1
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– Hn+1 ≤ Hn, so Jn+1−Jn = 2− (Hn+1−Hn) and Tn,n+1 = Hn− (Hn+1−
1) + 1 = 2− (Hn+1 −Hn), hence, Tn,n+1 = Jn+1 − Jn.

2. n and n+1 are in different trees (so In+1−In = −1, Hn+1 = 0). From that we
have Jn+1−Jn = 2+Hn+(−1) = 1+Hn. On the other hand Tn,n+1 = Hn+1
(by the construction of the contour process).

From the computation above together with the induction assumption we get the
statement.

Furthermore, we get the following formulas for Ct:

Claim 1.25. For t ∈ [Jn, Jn+1] we have

Ct = Hn − (t− Jn), if t ∈ [Jn, Jn+1 − 1]

Ct = (Hn+1 − (Jn+1 − t))+, if t ∈ [Jn+1 − 1, Jn+1].

Proof. We will use induction to prove this claim.

• For t ∈ [J0, J1] we have Ct =

{
t, if H1 = 0

0, if H1 = 0
= (H1− (J1− t))+ (because J1 = 1).

• Assume the statement holds for t ∈ [Jn−1, Jn]. We want to show it for t ∈
[Jn, Jn+1].
By the induction hypothesis we know that at the time Jn we are at un. Then by
the construction of the contour process we know that during the time [Jn, Jn+1−1]
the contour process goes back to the last common ancestor of un and un+1, hence,
Ct = Hn − (t− Jn) (since we move with unit speed).
Furthermore, on the interval [Jn+1 − 1, Jn+1] we move from the last common an-
cestor of un and un+1 to un+1, hence, Ct = Hn+1 − (Jn+1 − t)+.
The statement follows by the induction assumption.

From the formulas above we get the following bound:

Claim 1.26.

sup
t∈[Jn,Jn+1]

|Ct −Hn| ≤ |Hn+1 −Hn|+ 1

Proof. There two cases that we need to consider:

1. Let t ∈ [Jn, Jn+1 − 1], then

|Ct −Hn| = |Hn − (t− Jn)−Hn| = |t− Jn| ≤ |(Jn+1 − 1)− Jn|
= |1− (Hn+1 −Hn) + (In+1 − In)︸ ︷︷ ︸

∈{−1,0}

| ≤ |Hn+1 −Hn|+ 1.
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2. Let t ∈ [Jn+1 − 1, Jn+1], then

|Ct −Hn| = |(Hn+1 − (Jn+1 − t))+ −Hn|

=

{
Hn, if (Hn+1 − (Jn+1 − t))+ = 0

3n+ 1, if (Hn+1 − (Jn+1 − t))+ > 0

≤

{
|Hn −Hn+1|+ 1, if (Hn+1 − (Jn+1 − t))+ = 0

|Hn+1 −Hn|+ |Jn+1 − t|, if (Hn+1 − (Jn+1 − t))+ > 0

≤ |Hn+1 −Hn|+ 1.

Hence, the claim follows.

Furthermore, we define a random function ϕ : R+ → {0, 1, . . .} by

ϕ(t) = n iff t ∈ [Jn, Jn+1).

From Claim 1.26 we obtain

sup
t∈[0,m]

|Ct −Hϕ(t)| ≤ sup
t∈[0,Jm]

|Ct −Hϕ(t)| ≤ 1 + sup
n≤m
|Hn+1 −Hn|.

Moreover, we get the following bound

Claim 1.27.

sup
t∈[0,m]

|ϕ(t)− t

2
| ≤ sup

t∈[0,Jm]
|ϕ(t)− t

2
| ≤ 1

2
sup
n≤m

Hn +
1

2
|Im|+ 1. (4)

Proof. The first inequality is clear, since Jn ≥ n for all n.
To show the second inequality consider t ∈ [Jn, Jn+1) (n+ 1 ≤ m), then

|ϕ(t)− t

2
| = |n− t

2
| = 1

2
|Jn +Hn − In − t|︸ ︷︷ ︸

=:f(t)

.

Note that f is linear in t, hence, supt∈[Jn,Jn+1) f(t) is obtained in one of the endpoints of
the interval, hence

|Jn +Hn − In − t| ≤ max {|Jn +Hn − In − Jn|,|Jn +Hn − In − Jn+1|} .

Furthermore, it holds

|Jn +Hn − In − Jn+1| = |Jn+1 − Jn −Hn + In|
= |2− (Hn+1 −Hn) + (In+1 − In)−Hn + In|
= |2−Hn+1 + In+1| ≤ 2 + |Hn+1|+ |In+1|.

Hence, we get a bound

|Jn +Hn − In − t| ≤ 2 + max {Hn, Hn+1}+ |In|.
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Furthermore, we obtain

|ϕ(t)− t

2
| ≤ 1

2
max {Hn, Hn+1}+

1

2
|In|+ 1.

Finally putting all results together we have

sup
t∈[0,Jm]

|ϕ(t)− t

2
| ≤ 1

2
sup
n≤m

Hn +
1

2
|Im|+ 1.

Now we come to the main result of this section (it is an analogon of Theorem 1.21 for
contour functions).

Theorem 1.28.

(
1
√
p
C

(p)
2pt, t ≥ 0)

(d)−−−→
p→∞

(
2

σ
et, t ≥ 0)

where et is a normalized Brownian excursion.

Proof. For p ≥ 1, set ϕp(t) = p−1ϕ(pt). Using bound ( 4) obtained above we have for
all m ≥ 1

sup
t≤m
| 1
√
p
C

(p)
2pt −

1
√
p
H

(p)
pϕp(2t)| ≤

1
√
p

+
1
√
p

sup
t≤2m

|H(p)
[pt]+1 −H

(p)
[pt]|

(P )−−−→
p→∞

0 (5)

by Theorem 1.21.
Furthermore, by a conditional Donsker’s invariance theorem we get

1
√
p
I(p)
mp

(d)−−−→
p→∞

σ inf
t≤m

et.

Then by Claim 1.27 we obtain

sup
t≤m
|ϕ(2t)− t| ≤ 1

p
sup
k≤2mp

H
(p)
k +

1

p
|I(p)

2mp|+
2

p

(P )−−−→
p→∞

0. (6)

Hence, the statement follows by ( 5), ( 6) and Theorem 1.21.

We have shown that the rescaled height processes (and contour processes) of the
large Galton-Watson trees converge in distribution towards the normalized Brownian
excursion.
In the next section we will try to reinterpret those results in order to get the convergence
of trees, but for that we will need to define first how the limiting trees should look like.
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2 Real Trees and their Coding by Brownian Excursions

2.1 Real trees

Definition 10. A compact metric space (T , d) is a real tree, if the following two prop-
erties hold for every a, b ∈ T

1. there is a unique isometric map fa,b from [0, d(a, b)] into T , such that fa,b(0) = a
and fa,b(d(a, b)) = b;

2. if q is continuous, injective map from [0, 1] into T , such that q(0) = a and q(1) = b,
then we have q([0, 1]) = ([0, d(a, b)]).

A rooted tree is a real tree (T , d) with a distinguished vertex ρ = ρ(T ) called the root.

Further in the text we will only consider rooted trees.

Remark 2.1. Consider a rooted real tree (T ,d):

• the range of the mapping fa,b in 1. is [[a, b]] (the line segment between a and b in
the tree);

• [[ρ, a]] (the line segment between the root and a in the tree) is the ancestral line of
vertex a;

• we define a partial order on the tree by a ≺ b (a is an ancestor of b) iff a ∈ [[ρ, b]];

• if a, b ∈ T , there is a unique c ∈ T , such that [[ρ, a]] ∩ [[ρ, b]] = [[ρ, c]]. c is called
the most recent ancestor to a and b;

• we define the multiplicity of a vertex a ∈ T as the number of connected components
of T \ {a};

• vertices of T \ {ρ} with multiplicity one are called leaves.

We want to study the convergence of real trees, for this reason we need a notion
of distance between them. We will introduce the Gromov-Hausdorff distance between
compact metric spaces.
Let (E, δ) be a metric space. Denote as δHaus(K,K

′) the usual Hausdorff metric between
compact subsets of E

δHaus(K,K
′) = inf

{
ε > 0 : K ⊂ Uε(K ′) and K ′ ⊂ Uε(K)

}
where Uε(K)

def
= {x ∈ E : δ(x,K) ≤ ε}.

Then we define the Gromov-Hausdorff distance as following

Definition 11. Let T ,T ′ be two rooted compact metric spaces, with respective roots ρ
and ρ′. We define a distance between T ,T ′ (Gromov-Hausdorff distance) by

dGH(T , T ′) = inf
{
δHaus(φ(T , T ′)) ∨ δ(φ(ρ), φ′(ρ′))

}
where the infimum is over all choices of a metric space (E, δ) and all isometric embed-
dings φ : T → E and φ′ : T ′ → E of T and T ′ into (E, δ).

28



Remark 2.2. • Two rooted compact metric spaces T1 and T2 are called equivalent,
if there is a root preserving isometry that maps T1 onto T2.

• We denote T the set of all (equivalence classes of) rooted real trees.

• dGH defines a metric on T
– dGH(T , T ′) = 0 iff T = T ′ (by definition of equivalence classes);

– dGH(T , T ′) = dGH(T ′, T ) (because δHaus and δ are metrics);

– dGH(T , T ′) + dGH(T ′, T ′′) ≤ dGH(T , T ′′) (because δHaus and δ are metrics).

We will also use the alternative definition of dGH .
For two given compact metric spaces (T1, d1) and (T2, d2) we define a correspondence
between T1 and T2 as a subset R of T1 × T2, such that for all x1 ∈ T1 there exists
x2 ∈ T2, such that (x1, x2) ∈ R and conversely for all y ∈ T2 there is y1 ∈ T1, such that
(y1, y2) ∈ R.
The distorsion of the correspondence R is defined as

dis(R) = sup {|d1(x1, y1)− d2(x2, y2)| : (x1, x2), (y1, y2) ∈ R} .

Then we have following claim:

Claim 2.3. Let T , T ′ be two rooted compact metric spaces with respective roots ρ and
ρ′. Then

dGH(T , T ′) =
1

2
inf

R∈C(T ,T ′), (ρ,ρ′)∈R
dis(R)

(where C(T , T ′) denotes all correspondences between T and T ′).

Proof. (see [4], Lemma 2.3.)
We show first 1

2 inf dis(R) ≤ dGH(T , T ′).
For any root-invariant isometric copies φ(T ),φ′(T ′) embedded in a metric space (E, δ)
and such that r > dGH(T , T ′). We can define

R =
{

(x, x′) ∈ T × T ′ : δ(φ(x), φ′(x′)) < r
}

.

Note, that R is a correspondence between T and T ′, such that (ρ, ρ′) ∈ R.
Furthermore, we have

dis(R) < 2r.

This is because for x1, y1 ∈ T , x2, y2 ∈ T ′ by the triangle inequality we have

|dT (x1, y1)− dT ′(x2, y2)| = |δ(φ(x1), φ(y1))− δ(φ′(x2), φ′(y2))|
≤ δ(φ(x1), φ(y1)) + δ(φ′(x2), φ′(y2)) < 2r.
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Since we can choose r arbitrarily small, such that r > dGH(T , T ′), hence, we obtain

1

2
inf dis(R) ≤ dGH(T , T ′).

On the other hand we have to show

dGH(T , T ′) ≤ 1

2
inf dis(R).

Given a correspondence R containing (ρ, ρ′) we can define a distance d on T
⊔
T ′ (a

disjoint union of T and T ′) as

• d|T ×T = dT ;

• d|T ′×T ′ = dT ′ ;

• for x ∈ T , x′ ∈ T ′

d(x, x′) = inf

{
dT (x, y) + dT ′(x

′, y′) +
1

2
dis(R) : (y, y′) ∈ R

}
.

Note, that

• if (x, x′) ∈ R, then d(x, x′) = 1
2dis(R)

• d is a metric

– d(x, y) = 0 iff x = y;

– d is symmetric (it follows since dT and dT ′ are metrics);

– d satisfies the triangle inequality
In order to see this we need to check two cases (all other follow by symmetry).

1. Let x, y ∈ T and x′ ∈ T ′. We want to show

d(x, x′) + d(x′, y) ≥ d(x, y).

P = dT (x, y);

L = inf
{
dT (x, z) + dT ′(x

′, z′) : (z, z′) ∈ R
}

+
1

2
dis(R)

+ inf
{
dT (y, z̃) + dT ′(x

′, z̃′) : (z̃, z̃′) ∈ R
}

+
1

2
dis(R).

Hence, we need to show (for any z, z̃ ∈ T ; z′, z̃′ ∈ T ′, such that (z, z′), (z̃, z̃′) ∈
R)

dT (x, z) + dT ′(x
′, z′) + dT (y, z̃) + dT ′(x

′, z̃′) + dis(R) ≥ dT (x, y).
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Note further

dT ′(x
′, z′) + dT ′(x

′, z̃′) + dis(R) ≥ dT ′(z′, z̃′) + dis(R)

≥ dT ′(z′, z̃′) + |dT (z, z̃)− dT ′(z′, z̃′)| ≥ dT (z, z̃).

Hence, finally we obtain

dT (x, z) + dT ′(x
′, z′) + dT (y, z̃) + dT ′(x

′, z̃′) + dis(R)

≥ dT (x, z) + dT (z, z̃) + dT (y, z̃) ≥ dT (x, y).

2. Let x, y ∈ T , x′ ∈ T ′. We want to show

d(x, y) + d(y, x′) ≥ d(x, x′).

L = dT (x, y) + inf
{
dT (y, z) + dT ′(x

′, z′) : (z, z′) ∈ R
}

+
1

2
dis(R);

P = inf
{
dT (x, z̃) + dT ′(x

′, z̃′) : (z̃, z̃′) ∈ R
}

+
1

2
dis(R).

Let z, z̃ ∈ T , z′, z̃′ ∈ T ′, such that

d(x′, y) = dT (y, z) + dT ′(x
′, z′) +

1

2
dis(R);

d(x, x′) = dT (x, z̃) + dT ′(x
′, z̃′) +

1

2
dis(R).

We need to show that

dT (x, y) + dT (y, z) + dT ′(x
′, z′) ≥ dT (x, z̃) + dT ′(x

′, z̃′).

Note that we know

dT (y, z) + dT ′(x
′, z′) ≤ dT (y, z̃) + dT ′(x

′, z̃′);

dT (x, z̃) + dT ′(x
′, z̃′) ≤ dT (x, z) + dT ′(x

′, z′).

Hence, it is enough to show

dT (x, y) + dT (y, z) + dT ′(x
′, z′) ≥ dT (x, z) + dT ′(x

′, z′).

But this is the triangle inequality for dT .

Hence, it follows that d satisfies the triangle inequality.

So we have shown that d is a metric.
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Furthermore, computing the Hausdorff distance with the metric d we get

dHaus(T , T ′) ≤
1

2
dis(R)

(since by the definition of a correspondence ∀x ∈ T ∃x′ ∈ T ′, such that (x, x′) ∈ R and
conversely ∀y′ ∈ T ′ ∃y ∈ T , such that (y, y′) ∈ R). Moreover

d(ρ, ρ′) =
1

2
dis(R),

because (ρ, ρ′) ∈ R. Hence, we have

dHaus(T , T ′) ∨ d(ρ, ρ′) ≤ 1

2
dis(R).

So we obtain

dGH(T , T ′) ≤ 1

2
inf dis(R),

which finally proves our statement.

2.2 Coding of real trees

We will describe a method of coding real random trees well-suited for proving further
convergence results.
Consider a (deterministic) continuous function g : [0,∞)→ [0,∞) with compact support,
such that g(0) = 0 (we exclude the case g ≡ 0).
For every s, t ≥ 0 set

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r)

and

dg(s, t) = g(s) + g(t)− 2mg(s, t).

Furthermore, introduce an equivalence relation

s ∼ t iff dg(s, t) = 0.

Hence, we can define a quotient space Tg:

Tg
def
= [0,∞)/ ∼ .

Furthermore, we introduce a canonical projection pg : [0,∞)→ Tg.

Claim 2.4. (Tg, dg) is a metric space.

Proof. We need to check that dg is a metric. Let σ = pg(s), σ
′ = pg(t), σ

′′ = pg(u) ∈ Tg:
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• dg(σ, σ′) = 0 iff σ = σ′ (by definition of the equivalence relation);

• dg(σ, σ′) = dg(σ
′, σ) (since mg(s, t) = mg(t, s));

• dg(σ, σ′) ≤ dg(σ, σ′′) + dg(σ
′′, σ′).

This is because

dg(σ, σ
′′) + dg(σ

′′, σ′) = g(s) + g(u)− 2mg(s, u) + g(u) + g(t)− 2mg(u, t)

and

dg(σ, σ
′) = g(s) + g(t)− 2mg(s, t),

hence, we need to show

g(u)−mg(s, u) +mg(s, t)−mg(u, t) ≥ 0.

We can see that mg(s, t) = mg(u, t) or mg(s, t) = mg(s, u) (w.l.o.g. mg(s, t) =
mg(u, t)). Then we need g(u) −mg(s, u) ≥ 0, but it is clear by the definition of
mg.

Claim 2.5. pg is continuous (when [0,∞) is equipped with the Euclidean metric and Tg
with dg).

Proof. Note that

dg(pg(s), pg(t)) = g(s) + g(t)− 2mg(s, t) = d(g(s),mg(s, t)) + d(g(t),mg(s, t))

≤ d(g(s), g(t)) (where d is a Euclidean metric).

Hence, the claim follows by the continuity of g.

Remark 2.6. We set ρ = pg(0). If ζ > 0 is the supremum of the support of g, then we
have pg(t) = ρ for every t ≥ ζ. In particular Tg is compact, since Tg = pg([0, ζ]).

Now we will prove a theorem which gives a reason why we have introduced the quotient
space Tg.

Theorem 2.7. The metric space (Tg, dg) is a real tree. (We will view (Tg, dg) as a rooted
tree with a root ρ = pg(0).)

To get a better understanding of the construction of Tg please have a look at the
figure.
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g(r)

mg(s, t)

ρ = pg(0)

pg(s) ∧ pg(t)

pg(s)

pg(t)

The figure shows the construction of a subtree of Tg consisting of the union of the
ancestral lines of the vertices pg(s) and pg(t) corresponding to the times s, t ∈ [0, ζ].

Before proving Theorem 2.7 let us have a look on a lemma, which allows us to re-root
considered real tree.

Lemma 2.8. Let s0 ∈ [0, ζ). For any real r ≥ 0, denote by r the unique element of
[0, ζ], such that r − r is an integer multiple of ζ. Set

g′(s) = g(s0) + g(s0 + s)− 2mg(s0, s0 + s) for all s ∈ [0, ζ]

and g′(s) = 0 for s > ζ.
Then the function g′ is continuous with compact support and satisfies g′(0) = 0, so that
we can define Tg′. Furthermore, for all s, t ∈ [0, ζ] we have

dg′(s, t) = dg(s0 + s, s0 + t) (7)

and there exists a unique isometry R from Tg′ onto Tg, such that for all s ∈ [0, ζ]

R(pg′(s)) = pg(s0 + s). (8)

Remark 2.9. Assuming Theorem 2.7 we see that Tg′ coincides with the real tree Tg
re-rooted at pg(s0).

Let us prove Lemma 2.8.

Proof. It is easy to see from the definition of g′ that it is continuous, compactly supported
and that g′ = 0. Let us check now the relation ( 7). There are three cases that we need
to consider.

1. First consider the case when s, t ∈ [0, ζ − s0). The following two possibilities may
occur

• mg(s0 + s, s0 + t) ≥ mg(s0, s0 + s)
Note that then we have

mg(s0, s0 + r) = mg(s0, s0 + s) = mg(s0, s0 + t)
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for all r ∈ [s, t]. Hence

mg′(s, t) = inf
r∈[s∧t,s∨t]

g′(r)

= inf
r∈[s∧t,s∨t]

(g(s0) + g(s0 + r)− 2mg(s0, s0 + r))

= g(s0) +mg(s0 + s, s0 + t)− 2mg(s0, s0 + s).

Furthermore, we can compute

dg′(s, t) = g′(s) + g′(t)− 2mg′(s, t)

= g(s0) + g(s0 + s)− 2mg(s0, s0 + s)

+ g(s0) + g(s0 + t)− 2mg(s0, s0 + t)

− 2g(s0)− 2mg(s0 + s, s0 + t) + 4mg(s0, s0 + s)

= g(s0 + s) + g(s0 + t)− 2mg(s0 + s, s0 + t)

= dg(s0 + s, s0 + t).

• mg(s0 + s, s0 + t) < mg(s0, s0 + s) Note first that

mg′(s, t) = g′(r1)

where r1 is the first r ∈ [s, t], such that g(s0 + r) = mg(s0, s0 +s), because for
r ∈ [r1, t] we have g(s0 +r)−2mg(s0, s0 +r) ≥ −mg(s0, s0 +r) ≥ −mg(s0, s0 +
r1). Therefore

mg′(s, t) = g(s0)−mg(s0, s0 + s).

And further

dg′(s, t) = g′(s) + g′(t)− 2mg′(s, t)

= g(s0) + g(s0 + s)− 2mg(s0, s0 + s)

+ g(s0) + g(s0 + t)− 2mg(s0, s0 + t)

− 2g(s0) + 2mg(s0, s0 + s)

= g(s0 + s) + g(s0 + t)− 2mg(s0 + s, s0 + t)

= dg(s0 + s, s0 + t).

2. The second case to consider is when s, t ∈ [ζ − s0, ζ). Note that the situation is
symmetric to the first case (changing places of s and t). We have two further cases.

• mg(s0 + s, s0 + t) ≥ mg(s0, s0 + t)
We can note that

mg(s0, s0 + r) = mg(s0, s0 + t) = mg(s0 + s, s0)

for all r ∈ [s, t]. Hence, we obtain

mg′(s, t) = g(s0) +mg(s0 + s, s0 + t)− 2mg(s0, s0 + t).
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And it follows

dg′(s, t) = dg(s0 + s, s0 + t)

by the same computation as above.

• mg(s0 + s, s0 + t) < mg(s0 + t, s0)
We can see that

mg′(s, t) = g′(r1)

where r1 is the last r ∈ [s, t], such that g(s0 + r) = mg(s0, s0 + t), be-
cause for r ∈ [s, r1] we have g(s0 + r) − 2mg(s0, s0 + r) ≥ −mg(s0, s0 + r) ≥
−mg(s0, s0 + r1). Therefore

mg′(s, t) = g(s0)−mg(s0, s0 + t).

Hence, we obtain in a similar way as above

dg′(s, t) = dg(s0 + s, s0 + t).

(because mg(s0 + s, s0 + t) = mg(s0, s0 + s)).

3. Let s ∈ [0, ζ − s0) and t ∈ [ζ − s0, ζ). There are two cases that we need to take
into account.

• mg(s0 + t, s0) ≤ mg(s0, s0 + s)
Then

mg′(s, t) = g′(r1)

where r1 is the first r ∈ [s, t], such that g(s0 + r) = mg(s0, s0+s), since for r ∈
[r1, t] we have g(s0 + r)−2mg(s0, s0 + r) ≥ −mg(s0, s0 + r) ≥ −mg(s0, s0 + r).
Hence

mg′(s, t) = inf
r∈[s∧t,s∨t]

g′(r)

= inf
r∈[s∧t,s∨t

(g(s0) + g(s0 + r)− 2mg(s0, s0 + r))

= g(s0)−mg(s0, s0 + s).

And further we obtain

dg′(s, t) = g′(s) + g′(t)− 2mg′(s, t)

= g(s0) + g(s0 + s)− 2mg(s0, s0 + s)

+ g(s0) + g(s0 + t)− 2mg(s0, s0 + t)

− 2g(s0) + 2mg(s0, s0 + s)

= g(s0 + s) + g(s0 + t)− 2mg(s0 + s, s0 + t)

= dg(s0 + s, s0 + t)

(because mg(s0, s0 + t) = mg(s0 + s, s0 + t)).
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• mg(s0 + t, s0) > mg(s0, s0 + s)
This case is symmetrical to the one that we have just considered (switching s
and t). We have

mg′(s, t) = g′(r1)

where r1 is the last r ∈ [s, t], such that g(r + s0) = mg(s0 + t, s0), since for r ∈
[s, r1] we have g(s0 + r)−2mg(s0, s0 + r) ≥ −mg(s0, s0 + r) ≥ −mg(s0, s0 + r1).
Hence, we get

mg′(s, t) = g(s0)−mg(s0 + t, s0).

And finally we obtain

dg′(s, t) = dg(s0 + s, s0 + t)

by the same computation as above, since mg(s0, s0 + s) = mg(s0 + s, s0 + t).

Hence, we have shown that ( 7) holds.
Now we can conclude that ( 8) is defined uniquely. Assume namely that pg′(s) = pg′(t).
We want to show that R(pg′(s)) = R(pg′(t)). But we have

pg′(s) = pg′(t)⇒ dg′(pg′(s), pg′(t)) = 0

⇒ dg(pg(s0 + s), pg(s0 + t)) = 0

⇒ pg(s0 + s) = pg(s0 + t)

⇒ R(pg′(s)) = R(pg′(t)).

Furthermore, R is an isometry, because

dg′(pg′(s), pg′(t)) = dg(pg(s0 + s), pg(s0 + t)) = dg(R(pg′(s)), R(pg′(t))).

The fact that R is surjective is also immediate, since let σ = pg(s) ∈ Tg, then σ =
R(pg′(s− s0)).

Now we will prove Theorem 2.7.

Proof. Preliminaries:
For σ, σ′ ∈ Tg we have

σ ≺ σ′ iff dg(σ, σ
′) = dg(ρ, σ

′)− dg(ρ, σ).

Moreover, if σ = pg(s), σ
′ = pg(t), then

σ ≺ σ′ iff mg(s, t) = g(s).
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This follows directly from the condition above, since dg(σ, σ
′) = g(s) + g(t) − 2mg(s, t)

and dg(ρ, σ
′)− dg(ρ, σ) = g(t)− g(s). Note that ”≺” defines a partial order on Tg.

For any σ0, σ ∈ Tg set

[[σ0, σ]] =
{
σ′ ∈ Tg : dg(σ0, σ) = dg(σ0, σ

′) + dg(σ
′, σ)

}
.

Furthermore, if σ = pg(s) and σ′ = pg(t), then it is easy to verify that [[ρ, σ]]∩ [[ρ, σ′]] =
[[ρ, γ]], where γ = pg(r), if r is the time when g achieves its minimum between s and t.
To check this note first

[[ρ, σ]] ∩ [[ρ, σ′]] =
{
σ̃ ∈ Tg : σ̃ ≺ σ and σ̃ ≺ σ′

}
;

[[ρ, γ]] = {σ̃ ∈ Tg σ̃ ≺ γ} .

• [[ρ, γ]] ⊂ [[ρ, σ]] ∩ [[ρ, σ′]]
because γ = pg(r), such that g(r) = mg(s, t), hence, g(r) = mg(s, r) and g(r) =
mg(r, t) and from that we have γ ≺ σ and γ ≺ σ′ and by transitivity [[ρ, γ]] ⊂
[[ρ, σ]] ∩ [[ρ, σ′]].

• [[ρ, σ]] ∩ [[ρ, σ′]] ⊂ [[ρ, γ]]
assume that there exists γ′ = pg(r

′), such that γ′ ∈ ([[ρ, σ]] ∩ [[ρ, σ′]]) \ [[ρ, γ]].
Then γ′ ≺ σ and γ′ ≺ σ′. Hence, g(r′) = mg(r

′, s) and g(r′) = mg(s, t) ⇒
g(r′) = mg(s, t). Now, since g(r) = mg(s, t) we have pg(r) = pg(r

′). Contradiction
to γ′ /∈ [[ρ, γ]].

Put γ = σ ∧ σ′.
Furthermore, set Tg[σ]

def
= {σ′ ∈ Tg : σ ≺ σ′}. Note that, if Tg[σ] 6= {σ} and σ 6= ρ, then

Tg[σ] \ {σ} and Tg \ Tg[σ] are two non-empty, disjoint open sets.

• Tg \ Tg[σ] is open, since Tg[σ] = pg({u ∈ [0, ζ] : mg(s, u) = g(s)}︸ ︷︷ ︸
compact

). Hence, Tg[σ] is

compact, so also closed.

• Tg[σ]\{σ} is open. In order to see that consider σ′ ∈ Tg[σ]\{σ}. ThenBdg(σ,σ′)(σ
′) ⊂

Tg[σ] \ {σ}. Hence, Tg \ {σ} is open.

Let us check the property 1. from the definition of a real tree. Take σ1, σ2 ∈ Tg. We
need to show the existence and the uniqueness of fσ1,σ2 .

• existence
Without loss of generality (by Lemma 2.8) set σ1 = ρ and further σ = σ2. So
we need to show that there exists an isometry fρ,σ : [0, dg(ρ, σ)] → Tg, such that
fρ,σ(0) = ρ and fρ,σ(dg(ρ, σ)) = σ.
Set s ∈ p−1

g ({σ}), such that g(s) = dg(ρ, σ). Then for all a ∈ [0, dg(ρ, σ)] we can
set

v(a) = inf {r ∈ [0, s] : mg(r, s) = a} .
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Note that g(v(a)) = a. Setting f(a) = pg(v(a)) we obtain f(0) = ρ and f(dg(ρ, σ)) =
σ (because f(dg(ρ, σ)) = pg(v(dg(ρ, σ))) = pg(v(g(s))) = pg(s) = σ).
We still need to check that f is an isometry. Let a, b ∈ [0, dg(ρ)], such that a ≤ b.
From mg(v(a), v(b)) = a (by the definition of v) we obtain

dg(f(a), f(b)) = dg(pg(v(a)), pg(v(b)))

= g(v(a)) + g(v(b))− 2mg(v(a), v(b)) = b− a,

so f is an isometry.

• uniqueness
Assume that f̃ : [0, dg(ρ, σ)]→ Tg is isometric, such that f̃(0) = ρ and f̃(dg(ρ, σ)) =
dg(ρ, σ). Let a ∈ [0, dg(ρ, σ)], then

dg(σ, f̃(a)) = dg(f̃(dg(ρ, σ)), f̃(a)) = dg(ρ, σ)− a
= dg(ρ, σ)− dg(ρ, f̃(a)).

Hence, f̃(a) ≺ σ.
Recall that σ = pg(s). Pick t, such that pg(t) = f̃(a). We can note that
g(t) = dg(ρ, pg(t)) = dg(f̃(0), f̃(a)) = a. Moreover, from f̃(a) ≺ σ we have
g(t) = mg(s, t).
On the other hand

a = g(v(a)) = mg(v(a), s).

Hence

dg(t, v(a)) = g(t) + g(v(a))− 2mg(v(a), t) = 0.

From that we finally get

f̃(a) = pg(t) = pg(v(a)) = f(a).

So the property 1. from the definition of a real tree is satisfied.
We still need to check the property 2. Let q : [0, 1] → Tg be continuous and injective.
We want to show that

q([0, 1]) = fq(0),q(1)([0, dg(q(0), q(1)]).

By Lemma 2.8 we can again assume q(0) = ρ and set σ = q(1). So it is enough to show
q([0, 1]) = [[ρ, σ]] (since fρ,σ([0, dg(ρ, σ)]) = [[ρ, σ]]).

• [[ρ, σ]] ⊂ q([0, 1])
Assume that γ ∈ [[ρ, σ]]\g([0, 1]). It follows that q([0, 1]) ⊂ (Tg[γ]\{γ})∪(Tg\Tg[γ]).
Moreover, ρ ∈ Tg\Tg[γ] and σ ∈ Tg[γ]\{γ} (because γ ≺ σ). This is a contradiction
to the fact that q([0, 1]) is connected.
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• [[ρ, σ]] ⊃ q([0, 1])
Assume that there is a ∈ (0, 1), such that q(a) /∈ [[ρ, σ]]. Set η = q(a) and γ = σ∧η.
Note that γ ∈ [[ρ, η]] ∩ [[η, σ]]. Moreover, dg(η, σ) = dg(η, γ) + dg(γ, σ). By the
similar argument as in the part 1. we have

γ ∈ [[ρ, η]] ⊂ q([0, a])

and analogously setting η to be a root, via root-change argument, we obtain

γ ∈ [[η, σ]] ⊂ q([a, 1]).

Since q is injective we finally get

γ = q(a) = η.

This is a contradiction to η /∈ [[ρ, σ]]. Hence, it follows that the property 2. must
necessarily be satisfied.

Now we will show the result that will allow us to conclude the convergence of real
trees from the convergences of coding functions.

Lemma 2.10. Let g, g′ : [0,∞) → [0,∞) be two continuous functions with compact
support, such that g(0) = 0 = g′(0). Then

dGH(Tg, Tg′) ≤ 2‖g − g′‖

(where ‖ · ‖ is the uniform norm).

Proof. Construct a correspondence between Tg and Tg′ by

R =
{

(σ, σ′) : σ = pg(t) and σ′ = pg′(t) for some t ≥ 0
}

.

Let (σ, σ′), (η, η′) ∈ R. By the definition of R there are s, t ≥ 0, such that pg(s) =
σ, pg(t) = η, pg′(s) = σ′ and pg′(t) = η′.
Furthermore, we have

dg(σ, η) = g(s) + g(t)− 2mg(s, t);

dg′(σ
′, η′) = g′(s) + g′(t)− 2mg′(s, t).

Hence

|dg(σ, η)− dg′(σ′, η′)|
= |g(s) + g(t)− 2mg(s, t)− g′(s)− g′(t) + 2mg′(s, t)| ≤ 4‖g − g′‖.

In particular it follows that

dis(R) ≤ 4‖g − g′‖.

Now by Claim 2.3 we obtain

dGH(Tg, Tg′) ≤ 2‖g − g′‖.
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2.3 The continuum random trees

Let e = (et, 0 ≤ t ≤ 1) be the normalized Brownian excursion.

Definition 12. The continuum random tree (CRT) is the real random tree Te coded by
the normalized Brownian excursion.

Remark 2.11. The CRT Te is a random variable taking values in the set T (by Lemma 2.10
CRT is continuous, thus measurable).

Note that

• A is the set of all (finite) rooted, ordered trees. By An denote the subset of A
consisting of trees with n vertices.

• We may view t ∈ A as a rooted real tree. If (Ct, t ≥ 0) is the contour function
of the tree, then we identify t = TC (note that the lexicographical structure of t
disappears, when we consider it as a real tree).

• For λ > 0 and T ∈ T the tree λT is just ”the same” tree rescaled by λ.

We come to our final result. We will show that the continuum random tree is the limit
of rescaled discrete random trees.

Theorem 2.12. For every n ≥ 1, let T(n) be a random tree distributed uniformly over

An. Then 1√
pT(n) converges in distribution to the CRT Te in the space T.

Proof. We consider the case where θ is a Galton-Watson tree with the geometric offspring
distribution µ(k) = 2−k−1 (Note that for X ∼ µ: E[X] = 1, var(X) = 2). Moreover, for
n ≥ 1 let θn be distributed as θ, conditioned to have n vertices. Then θn has the same
distribution as T(n).
On the other hand, for (Cnt , t ≥ 0) the contour function of θn define

C̃nt =
1√
2n
Cn2nt, t ≥ 0.

By Theorem 1.28 (( 1√
pC

(p)
2pt, t ≥ 0)

(d)−−−→
p→∞

( 2
σet, t ≥ 0)) we have

(C̃nt , t ≥ 0)
(d)−−−→
p→∞

(et, t ≥ 0).

(Note that σ =
√

2.) Since θn has the same distribution as T(n), hence, the tree TC̃n
coded by C̃n has the same distribution as 1√

2n
T(n). Hence, the statement follows from

Lemma 2.10.
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